产品分类

您的位置:首页 > 技术文章 > 生物信息学技术:基因芯片实验原理与方法

技术文章

生物信息学技术:基因芯片实验原理与方法

更新时间:2014-11-14 浏览次数:1847

本实验的目的是学会cDNA芯片的使用方法。了解各种基因芯片的基本原理和优缺点。

基因芯片这一技术方法在1991年的Science杂志上被提出,其高通量、并行检测的特点适应了分析人类基因组计划所提供的海量的基因序列信息的需要,可以说,人类基因组计划是基因芯片技术发展的原因,而对深人研究基因突变和基因表达的有效方法的需求又是促进基因芯片技术发展的动力。

由于基因芯片高速度、高通量、集约化和低成本的特点,基诞生以来就受到科学界的广泛关注,正如晶体管电路向集成电路发展的经历一样,分子生物学技术的集成化正在使生命科学的研究和应用发生一场革命。

根据固定在芯片载体上的核酸分子的不同,基因芯片可以分为cDNA芯片和寡核昔酸芯片等。寡核昔酸芯片主要基于光引导聚合技术,该技术是Affymetrix公司开发的技术,由于其突出的优点,正得到越来越广泛的应用。

二、原理

基因芯片(Gene Chip,DNA Chip),又称DNA微阵列(DNA Micorarray),是指按照预定位置固定在固相载体上很小面积内的千万个核酸分子所组成的微点阵阵列。在一定条件下,载体上的核酸分子可以与来自样品的序列互补的核酸片段杂交。如果把样品中的核酸片段进行标记,在的芯片阅读仪上就可以检测到杂交信号。

基因芯片技术主要包括四个主要步骤:芯片制备、样品制备、杂交反应和信号检测和结果分析。

1、芯片制备-目前制备芯片主要以玻璃片或硅片为载体,采用原位合成和微矩阵的方法将寡核苷酸片段或cDNA作为探针按顺序排列在载体上。芯片的制备除了用到微加工工艺外,还需要使用机器人技术。以便能快速、准确地将探针放置到芯片上的位置。

2、样品制备-生物样品往往是复杂的生物分子混合体,除少数特殊样品外,一般不能直接与芯片反应,有时样品的量很小。所以,必须将样品进行提取、扩增,获取其中的蛋白质或DNA、RNA,然后用荧光标记,以提高检测的灵敏度和使用者的安全性。
 
3、杂交反应-杂交反应是荧光标记的样品与芯片上的探针进行的反应产生一系列信息的过程。选择合适的反应条件能使生物分子间反应处于*状况中,减少生物分子之间的错配率。

4、信号检测和结果分析-杂交反应后的芯片上各个反应点的荧光位置、荧光强弱经过芯片扫描仪和相关软件可以分析图像,将荧光转换成数据,即可以获得有关生物信息。

目前,基因芯片主要由寡核苷酸芯片和cDNA芯片两大类组成。以下分别介绍这两类芯片的基本原理和特点:

寡核苷酸芯片(Oligonucleotides Chip)

概念:是指做在固相载体上的寡核苷酸微阵列。其制备方法以直接在基片上进行原位合成为主、有时也可以预先合成,再按照制备cDNA芯片的方法固定在基片上。原位合成(In situ synthesis)是目前制造高密度寡核苷酸芯片zui为成功的方法,有几种不同的工艺,其中zui的是美国Affymetrix公司(http://www.affymetrix.com)的技术——光引导化学合成法(Light-directed chemical synthesis process)。产品名为GeneChip。

在线客服
返回顶部